K1382HX045

БИС преобразователя фазы квадратурного сигнала в код положения (БИС датчика угла).
1. Оглавление

1. ОГЛАВЛЕНИЕ ... 2

2. ОПИСАНИЕ БИС ... 3

3. СТРУКТУРНАЯ СХЕМА .. 4

4. ТАБЛИЦА ВЫВОДОВ БИС .. 4

5. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ... 6

6. ОПИСАНИЕ РЕГИСТРОВ НАСТРОЙКИ БИС ... 7

7. ПРОГРАММИРОВАНИЕ БИС ... 10

7.1 КАРТА АДРЕСАЦИИ РЕГИСТРОВ БИС .. 11

8. ПРОГРАММИРУЕМЫЙ УСИЛИТЕЛЬ ... 14

9. СИСТЕМНАЯ ДИАГРАММА РАБОТЫ БИС .. 18

10. НАСТРОЙКА ПАРАМЕТРОВ ПРЕОБРАЗОВАНИЯ ... 20

11. ВЫБОР ОПОРНОГО НАПРЯЖЕНИЯ ... 22

12. ОПРЕДЕЛЕНИЕ АМПЛИТУДЫ СИГНАЛА И ФЛАГИ ОШИБКИ ... 25

13. ИНТЕРФЕЙС OWI .. 26

13.1 ФОРМАТ ДАННЫХ И ОПИСАНИЕ КОМАНД ... 27

13.2 ЗАПИСЬ ЧЕРЕЗ OWI ... 29

13.3 ЧТЕНИЕ ЧЕРЕЗ OWI ... 29

13.4 ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ ... 30

14. СТАТУСНЫЙ РЕГИСТР STATUS_REG .. 31

15. СПЯЩИЙ РЕЖИМ .. 32

16. АВТОМАТИЧЕСКАЯ РЕГУЛИРОВКА УСИЛЕНИЯ ... 32

17. ДИНАМИЧЕСКАЯ КОМПЕНСАЦИЯ НАПРЯЖЕНИЯ СМЕЩЕНИЯ .. 32

18. ИНТЕРФЕЙС SSI/SPI .. 33

18.1 РЕЖИМ ЧТЕНИЯ УГЛОВЫХ ДАННЫХ .. 33

18.2 РЕЖИМ НАСТРОЙКИ ... 36

19. КОРПУС .. 39

Исполнение в корпусе QFN40 ... 39
Исполнение в корпусе H16.48 .. 40
Исполнение в корпусе 5122.24 (H06.24) .. 42
БЕСКОРПУСНОЕ ИСПОЛНЕНИЕ ... 43

20. СХЕМЫ ПРЯМЕННИЯ .. 44

20.1 МАГНИТОРЕЗИСТИВНЫЙ ДАТЧИК УГЛА С ЛИНЕЙНЫМ ВЫХОДОМ И ОПОРНЫМ НАПРЯЖЕНИЕМ ОТ ВНУТРЕННЕГО ИСТОЧНИКА ОПОРНОГО НАПРЯЖЕНИЯ ... 44

20.2 МАГНИТОРЕЗИСТИВНЫЙ ДАТЧИК УГЛА С ЛИНЕЙНЫМ ВЫХОДОМ И ОПОРНЫМ НАПРЯЖЕНИЕМ С ПЛЕЧ МОСТА 45

20.3 МАГНИТОРЕЗИСТИВНЫЙ ДАТЧИК УГЛА С ЦИФРОВЫМ ВЫХОДОМ .. 45

20.4 НАСТРОЙКА ДАТЧИКА С МАГНИТОРЕЗИСТОРАМИ .. 46

20.5 РАБОТА С ВНЕШНИМ СИНИСУНО-КОСИСУНУСНЫМ ДАТЧИКОМ УГЛА С ДИФФЕРЕНЦИАЛЬНЫМ ВЫХОДОМ .. 47

20.6 РАБОТА С ДАТЧИКАМИ С ОДНОПОЛЯРНЫМ ВЫХОДОМ .. 47

21. СРЕДСТВА РАЗРАБОТКИ ... 49
2. Описание БИС

БИС предназначена для преобразования входного синус/косинусного сигнала в линейный по фазе код. Микросхема предназначена для работы с внешним магниторезистивным датчиком (типа KMZ41 или аналогичными), также БИС может работать с любыми типами датчиков положения с синусно-косинусным выходом, амплитуда выходного сигнала которых находится в пределах рабочего диапазона напряжений БИС.

БИС содержит на входе два программируемых усилителя с коэффициентом усиления 13-108, предназначенные для усиления сигналов с датчика. Сигналы с усилителей поступают на АЦП, где преобразуется в 13-ти битный цифровой код.

Оцифрованные синусный и косинусный сигналы поступают на блок вычисления кода фазы по алгоритму CORDIC. Далее сигнал поступает на блок коррекции, где производится подготовка сигнала (установка порогов, крутизны и нулевого положения) для выдачи на ЦАП. С ЦАП сигнал поступает на выход БИС.

Для хранения коэффициентов настройки БИС располагает блоком электрически стираемой программируемой памяти (EEPROM). Программирование БИС осуществляется по однопроводному интерфейсу, совмещенному с аналоговым выходом, либо по интерфейсу SPI.

График зависимости выходного сигнала от квадратурного сигнала положения показан на рис.2.1.

Рис.2.1. Соответствие между выходным и входным сигналами.
3. Структурная схема

Рис.3.1. Структурная схема БИС

4. Таблица выводов БИС

<table>
<thead>
<tr>
<th>№ на кристалле</th>
<th>Название вывода</th>
<th>Тип</th>
<th>Назначение</th>
<th>QFN 40</th>
<th>5122.24 (H06.24)</th>
<th>H16.48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CFG</td>
<td>DI-PD-ST</td>
<td>Вход выбора режима работы интерфейса SSI/SPI</td>
<td>1</td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>CSn</td>
<td>DI -PU-ST</td>
<td>Вход активации интерфейса SSI/SPI</td>
<td>2</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>CLK</td>
<td>DI -PU-ST</td>
<td>Тактовая частота интерфейса SSI/SPI</td>
<td>3</td>
<td>5</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>MISO</td>
<td>DO 4</td>
<td>Выход интерфейса SSI/SPI</td>
<td>4</td>
<td>6</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>MOSI</td>
<td>DI -PU-ST</td>
<td>Вход интерфейса SSI/SPI</td>
<td>5</td>
<td>7</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>VCG</td>
<td>AI</td>
<td>Аналоговый вход для тестирования EEPROM</td>
<td>6</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>VS</td>
<td>AI</td>
<td>Аналоговый вход для тестирования EEPROM</td>
<td>7</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>MOUT</td>
<td>DO_1</td>
<td>Выход модулятора</td>
<td>9</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>ERR/D TSTO</td>
<td>DO_1</td>
<td>Сигнал ошибки/Программируемый тестовый цифровой выход</td>
<td>10</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>№ на кристалле</td>
<td>Название вывода</td>
<td>Тип</td>
<td>Назначение</td>
<td>QFN 40</td>
<td>5122.24 (H06.24)</td>
<td>H16.48</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>-----</td>
<td>--</td>
<td>-------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>10</td>
<td>TEST_P/AD6</td>
<td>DI-PU-ST</td>
<td>Вход тестирования ЦАП</td>
<td>11</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>SLEEP</td>
<td>DI-PD-ST</td>
<td>Вход активации спящего режима</td>
<td>12</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>OUT</td>
<td>AIO</td>
<td>Сигнальный вход/выход</td>
<td>13</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>VSS</td>
<td>S</td>
<td>Цифровая земля</td>
<td>15</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>AVSS</td>
<td>S</td>
<td>Аналоговая земля</td>
<td>16</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>VDD</td>
<td>S</td>
<td>Цифровое питание</td>
<td>18</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>AVDD</td>
<td>S</td>
<td>Аналоговое питание</td>
<td>19</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>ATSTO</td>
<td>AО</td>
<td>Программируемый тестовый аналоговый выход</td>
<td>21</td>
<td>-</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>ADCIN 2n</td>
<td>AIO</td>
<td>Выход первичного усилителя 2 – вход модулятора 2</td>
<td>23</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>ADCIN 2p</td>
<td>AIO</td>
<td>Выход первичного усилителя 2 – вход модулятора 2</td>
<td>24</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>ADCIN 1n</td>
<td>AIO</td>
<td>Выход первичного усилителя 1 – вход модулятора 1</td>
<td>25</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>ADCIN 1p</td>
<td>AIO</td>
<td>Выход первичного усилителя 1 – вход модулятора 1</td>
<td>26</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>22</td>
<td>VREF</td>
<td>AO</td>
<td>Выход опорного напряжения VDD/2</td>
<td>27</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>23</td>
<td>MR_CU RR</td>
<td>AO</td>
<td>Выход источника тока</td>
<td>28</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>24</td>
<td>VDDR</td>
<td>AО</td>
<td>Выход питания чувствительного элемента</td>
<td>29</td>
<td>21</td>
<td>29</td>
</tr>
<tr>
<td>25</td>
<td>VSSR</td>
<td>S</td>
<td>Выход земли чувственного элемента</td>
<td>31</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>26</td>
<td>AVSS</td>
<td>S</td>
<td>Аналоговая земля</td>
<td>32</td>
<td>-</td>
<td>33</td>
</tr>
<tr>
<td>27</td>
<td>AVDD</td>
<td>S</td>
<td>Аналоговое питание</td>
<td>33</td>
<td>-</td>
<td>34</td>
</tr>
<tr>
<td>28</td>
<td>SINn</td>
<td>AI</td>
<td>Вход SIN с чувствительного элемента, отрицательный</td>
<td>34</td>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>29</td>
<td>COSn</td>
<td>AI</td>
<td>Вход COS с чувствительного элемента, отрицательный</td>
<td>35</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>30</td>
<td>VDDR</td>
<td>AО</td>
<td>Выход питания чувственного элемента</td>
<td>36</td>
<td>-</td>
<td>37</td>
</tr>
<tr>
<td>31</td>
<td>SINp</td>
<td>AI</td>
<td>Вход SIN с чувствительного элемента, положительный</td>
<td>37</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>32</td>
<td>COSp</td>
<td>AI</td>
<td>Вход COS с чувствительного элемента, положительный</td>
<td>38</td>
<td>2</td>
<td>39</td>
</tr>
</tbody>
</table>

Таблица 1. Функциональное назначение выводов БИС.
S – питание
AO – аналоговой выход
AI – аналоговый вход
AIO – аналоговый вход/выход
DO – цифровой выход
DI-PU-ST – цифровой вход с подтяжкой к логической единице и триггером Шмидта
DI-PD-ST – цифровой вход с подтяжкой к логическому нулю и триггером Шмидта
DO_х – цифровой выход с нагрузочной способностью х мА
5. Технические характеристики

Таблица 5.1. Технические характеристики БИС датчика угла.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Обозначение</th>
<th>Условия измерения</th>
<th>Значение</th>
<th>Единицы измерения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Напряжение питания</td>
<td>V_{CC}</td>
<td>-40... +125 °C</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Ток потребления</td>
<td>I_{DD}</td>
<td>-40... +125 °C</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Ток потребления в спящем режиме</td>
<td>I_{DOS}</td>
<td>-40... +125 °C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Электрическое разрешение, градусов</td>
<td>Φ_{res}</td>
<td>-40... +125 °C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Угловая ошибка</td>
<td>Φ_{ERR}</td>
<td>-40... +125 °C</td>
<td>-1.35</td>
<td>-</td>
</tr>
<tr>
<td>Настройка нулевого положения</td>
<td>Φ_{ref}</td>
<td>-40... +125 °C</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Нижний рабочий порог выходного напряжения</td>
<td>V_{CLL}</td>
<td>-40... +125 °C</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Верхний рабочий порог выходного напряжения</td>
<td>V_{CU}</td>
<td>-40... +125 °C</td>
<td>95</td>
<td>-</td>
</tr>
<tr>
<td>Вариация значений порогов</td>
<td>V_{CLL}</td>
<td>-40... +125 °C</td>
<td>-3</td>
<td>-</td>
</tr>
<tr>
<td>Максимальный выходной ток</td>
<td>I_{out_max}</td>
<td>-40... +125 °C</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Временные параметры

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Наименование</th>
<th>Условия измерения</th>
<th>Значение</th>
<th>Единицы измерения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Время включения</td>
<td>T_{on}</td>
<td>-40... +125 °C</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Время преобразования</td>
<td>T_{conv}</td>
<td>-40... +125 °C</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Время установления выходного сигнала, мс</td>
<td>T_{setl}</td>
<td>-40... +125 °C</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Время выхода из спящего режима</td>
<td>T_{ss}</td>
<td>-40... +125 °C</td>
<td>140</td>
<td>200</td>
</tr>
<tr>
<td>Частота сигнала CLK интерфейса SPI/SSI</td>
<td>f_{CLK}</td>
<td>-40... +125 °C</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Параметры опорного напряжения
Входное сопротивление

Верхнее опорное напряжение встроенного ИОН	V_{REFH}	-40... +125 °C	-	4,15	-	B
Нижнее опорное напряжение встроенного ИОН	V_{REFL}	-40... +125 °C	-	0,85	-	B
Опорное напряжение VDD/2 на выходе VREF	V_{VREF}	-40... +125 °C	0.5·AVD D – 0,05	0.5·AVD D	0.5·AVDD + 0,05	B

Параметры входного тракта

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Описание</th>
<th>Значение по умолчанию (десятичные)</th>
<th>Доступность для программирования пользователем</th>
</tr>
</thead>
<tbody>
<tr>
<td>Входное сопротивление</td>
<td>R_{in}</td>
<td>-40... +125 °C</td>
<td>1</td>
</tr>
<tr>
<td>Коэффициент усиления входного тракта</td>
<td>G_{in}</td>
<td>-40... +125 °C</td>
<td>13</td>
</tr>
<tr>
<td>Диапазон подстройки напряжения смещения</td>
<td>V_{off_trim}</td>
<td>-40... +125 °C</td>
<td>-60</td>
</tr>
</tbody>
</table>

Параметры питания внешнего сенсора

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значение</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ток встроенного источника тока</td>
<td>I_{mr}</td>
<td>-40... +125 °C</td>
</tr>
<tr>
<td>Сопротивление резистора AVDD-VDDR</td>
<td>R_{vddr}</td>
<td>-40... +125 °C</td>
</tr>
<tr>
<td>Сопротивление резистора VSSR-AVSS</td>
<td>R_{vssr}</td>
<td>-40... +125 °C</td>
</tr>
</tbody>
</table>

Параметры цифровых входов-выходов

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значение</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Входное напряжение низкого уровня</td>
<td>U_{IL}</td>
<td>-40... +125 °C</td>
</tr>
<tr>
<td>Входное напряжение высокого уровня</td>
<td>U_{IH}</td>
<td>-40... +125 °C</td>
</tr>
<tr>
<td>Выходное напряжение низкого уровня</td>
<td>U_{OL}</td>
<td>-40... +125 °C</td>
</tr>
<tr>
<td>Выходное напряжение высокого уровня</td>
<td>U_{OH}</td>
<td>-40... +125 °C</td>
</tr>
</tbody>
</table>

Описание регистров настройки БИС

<table>
<thead>
<tr>
<th>№</th>
<th>Название регистра</th>
<th>Описание</th>
<th>Значение по умолчанию (десятичные)</th>
<th>Доступность для программирования пользователем</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FREQG[4:0]</td>
<td>Подстройка частоты тактового генератора</td>
<td>15</td>
<td>Не доступно</td>
</tr>
<tr>
<td>2</td>
<td>TCURR[3:0]</td>
<td>Подстройка тока питания датчика</td>
<td>7</td>
<td>Не доступно</td>
</tr>
<tr>
<td>3</td>
<td>GA_X[4:0]</td>
<td>Подстройка коэффициента усиления</td>
<td>0</td>
<td>Не доступно</td>
</tr>
<tr>
<td>№</td>
<td>Название регистра</td>
<td>Описание</td>
<td>Значение по умолчанию (десятичные)</td>
<td>Доступность для программированья пользователем</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>OA_X[5:0]</td>
<td>Подстройка напряжение смещения входного усилителя канала X</td>
<td>0</td>
<td>Не доступно</td>
</tr>
<tr>
<td>5</td>
<td>GA_Y[4:0]</td>
<td>Подстройка коэффициента усиления выходного усилителя канала Y</td>
<td>0</td>
<td>Не доступно</td>
</tr>
<tr>
<td>6</td>
<td>OA_Y[5:0]</td>
<td>Подстройка напряжение смещения входного усилителя канала Y</td>
<td>0</td>
<td>Не доступно</td>
</tr>
<tr>
<td>7</td>
<td>ZERO_POS[12:0]</td>
<td>Установка нулевого положения</td>
<td>0</td>
<td>Доступно</td>
</tr>
<tr>
<td>8</td>
<td>PHI_MAX[12:0]</td>
<td>Верхний уровень выходного напряжения</td>
<td>4806</td>
<td>Доступно</td>
</tr>
<tr>
<td>9</td>
<td>PHI_MIN[12:0]</td>
<td>Нижний уровень выходного напряжения</td>
<td>256</td>
<td>Доступно</td>
</tr>
<tr>
<td>10</td>
<td>ANG_RNG_LSB[13:0]</td>
<td></td>
<td>0</td>
<td>Доступно</td>
</tr>
<tr>
<td>11</td>
<td>ANG_RNG_MSB[5:0]</td>
<td></td>
<td>1</td>
<td>Доступно</td>
</tr>
<tr>
<td>12</td>
<td>AOC_EN</td>
<td>Включение системы автоматической подстройки напряжения смещения</td>
<td>0</td>
<td>Доступно</td>
</tr>
<tr>
<td>13</td>
<td>LOCK[15:0]</td>
<td>Бит блокировки записи в «заводскую» область настройки</td>
<td>0</td>
<td>Не доступно</td>
</tr>
<tr>
<td>14</td>
<td>CHIP_ID[31:0]</td>
<td>Идентификационный номер кристалла</td>
<td>0</td>
<td>Доступно</td>
</tr>
<tr>
<td>15</td>
<td>DIR</td>
<td>Выбор положительного направления вращения</td>
<td>0</td>
<td>Доступно</td>
</tr>
<tr>
<td>16</td>
<td>OFFSET_SIN[12:0]</td>
<td>Смещение синусного канала, знаковое представление</td>
<td>0</td>
<td>Не доступно</td>
</tr>
<tr>
<td>17</td>
<td>OFFSET_COS[12:0]</td>
<td>Смещение косинусного канала, знаковое представление</td>
<td>0</td>
<td>Не доступно</td>
</tr>
<tr>
<td>18</td>
<td>SDIS</td>
<td>Отключение блока питания магниторезистора</td>
<td>0</td>
<td>Не доступно</td>
</tr>
<tr>
<td>19</td>
<td>EN360</td>
<td>Включение режима генерации данных на один оборот 360 град.</td>
<td>1</td>
<td>Доступно</td>
</tr>
<tr>
<td>20</td>
<td>PDIS</td>
<td>Отключение программируемого усилителя и подача</td>
<td>0</td>
<td>Не доступно</td>
</tr>
<tr>
<td>№</td>
<td>Название регистра</td>
<td>Описание</td>
<td>Значение по умолчанию (десятичные)</td>
<td>Доступность для программирования пользователем</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>21</td>
<td>ADCNT[1:0]</td>
<td>Программирование частоты тактирования АЦП</td>
<td>1</td>
<td>Доступно</td>
</tr>
<tr>
<td>22</td>
<td>EE_LD_EN</td>
<td>Разрешение перезагрузки из EEPROM в регистры</td>
<td>0</td>
<td>Запрещено</td>
</tr>
<tr>
<td>23</td>
<td>ANG_CLAMP_DN[12:0]</td>
<td>Ограничение углового положения на выходе блока Cordic</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>EML_OUT_EN</td>
<td>Разрешить выдачу сигнала ошибки «Потеря магнитного поля» EML на аналоговый выход</td>
<td>1</td>
<td>Разрешено</td>
</tr>
<tr>
<td>25</td>
<td>AMP_EML_TH[12:0]</td>
<td>Установка порога срабатывания для компаратора детектирования слабого магнитного поля EML</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>XG[1:0]</td>
<td>Регистр кратного увеличения коэффициента усиления входных усилителей</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>REF[1:0]</td>
<td>Выбор режима подачи опорного напряжения на АЦП</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>DTSTO_DIS</td>
<td>Выключение выхода DTSTO</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>SSI_MODE</td>
<td>Активация режима SSI</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>AGC_EN</td>
<td>Включение АРУ</td>
<td>0</td>
<td>Отключен</td>
</tr>
</tbody>
</table>

Внутренняя память настроек имеет две области:
- область пользовательских настроек;
- область «заводских» настроек.

В БИС реализована возможность блокировки перепрограммирования области заводских данных, путем записи числа **FE93**(hex) в регистр LOCK[15:0] (ADDR=00). При записи в эту строку LOCK=**FE93**(hex) работа с памятью будет ограничена.

Станут недоступны следующие операции с памятью:
- Блочная запись в память.
- Блочное стирание памяти
- Запись/стирание данных в заводской области
Таблица 6.2. Аналоговые настройки БИС датчика угла.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Обозначение</th>
<th>Значение (код подстройки)</th>
<th>Целевое значение параметра</th>
</tr>
</thead>
<tbody>
<tr>
<td>Подстройка частоты тактового генератора</td>
<td>FREQ[4:0]</td>
<td>0 15 31</td>
<td>8 МГц ±5%</td>
</tr>
<tr>
<td>Подстройка тока питания датчика</td>
<td>TCURR[3:0]</td>
<td>0 7 15</td>
<td>0.5 – 4.6 мА</td>
</tr>
<tr>
<td>Подстройка коэффициента усиления синусного канала</td>
<td>[XG[1:0], GA_X[4:0]]</td>
<td>0 0 127</td>
<td>13 - 110</td>
</tr>
<tr>
<td>Подстройка коэффициента усиления косинусного канала</td>
<td>[XG[1:0], GA_Y[4:0]]</td>
<td>0 0 127</td>
<td>13 - 110</td>
</tr>
<tr>
<td>Подстройка напряжения смещения синусного канала (при XG=0 GA_X=0)</td>
<td>OA_X[5:0]</td>
<td>0 0 63</td>
<td>-75 …+75 мВ</td>
</tr>
<tr>
<td>Подстройка напряжения смещения косинусного канала (при XG=0 GA_Y=0)</td>
<td>OA_Y[5:0]</td>
<td>0 0 63</td>
<td>-75 …+75 мВ</td>
</tr>
</tbody>
</table>

Таблица 6.3: Настройка тактовой частоты АЦП

<table>
<thead>
<tr>
<th>#</th>
<th>ADCNT[1:0]</th>
<th>F(ADCCLK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>FCLK/4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>FCLK/2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>FCLK</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>FCLK/8</td>
</tr>
</tbody>
</table>

7. Программирование БИС

БИС содержит электрически стираемую программируемую память размером 32x16 со встроенным генератором повышенного напряжения программирования. Программирование осуществляется по однопроводному двунаправленному цифровому интерфейсу либо по интерфейсу SPI.

Однопроводный интерфейс реализован на одном паде с аналоговым выходом. Для входа в режим программирования необходимо в течение определенного времени (26 мс) после подачи питания подать на выход ИС определенную команду (см. разд.13). После того, как запускающая интерфейс последовательность импульсов прочитана, БИС отключает аналоговый буфер ЦАП и переводит выход в режим программирования.

Источник сигнала, запускающего команду программирования, должен обладать выходной мощностью достаточной для пересиливания выхода ЦАП, имеющего максимальный выходной ток 2мА.
Запись в область EEPROM происходит в 2 этапа: вначале подается команда стирания строки, затем команда записи данных в строку.

Данные из EEPROM в регистры перегружаются после включения питания. Микросхема поддерживает специальную команду интерфейса для перегрузки данных из EEPROM в регистры без выключения-включения питания.

Если был установлен бит SSI_MODE, доступ через интерфейс SPI блокируется. Для стирания бит SSI_MODE необходимо использовать интерфейс OWI.

7.1 Карта адресации регистров БИС

Для адресации ко всем регистрам и области EEPROM используется общее адресное пространство. Карта распределения регистров в адресном пространстве показана в таблице 7.1.1.
Таблица 7.1.1. Карта распределения адресного пространства БИС

<table>
<thead>
<tr>
<th>Адрес</th>
<th>Биты в 16-ти битном слове</th>
<th>Устройство/доступ (RO-только чтение RW-чтение запись)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>LOCK[15:0]</td>
<td>EEPROM/RW</td>
</tr>
<tr>
<td>01</td>
<td>FREQ[4:0]</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>GA_X[4:0]</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>DTSTO_DIS PDIS SDIS XG[1:0] GA_Y[4:0] OA_Y[5:0]</td>
<td>Область заводских данных</td>
</tr>
<tr>
<td>04</td>
<td>OFFSET_SIN[12:0]</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>OFFSET_COS[12:0]</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>ANG_CLAMP_DN[12:0]</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>AMP_EML_TH[12:0]</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>EE_LD_EN</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>CHIP_ID[31:16]</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CHIP_ID[15:0]</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>EN360 ZERO_POS[12:0]</td>
<td>Область пользовательских данных</td>
</tr>
<tr>
<td>12</td>
<td>PHI_MIN[12:0]</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PHI_MAX[12:0]</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ANG_RNG_LSB[13:0]</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SSI_MODE EML_OUT_EN AGC_EN ADCNT[1:0] REF[1:0] DIR AOC_EN</td>
<td>ANG_RNG_MSB[5:0]</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

АО «ЗНТЦ» Дизайн-центр проектирования СБИС
БИС датчика угла К1382НХ045
Спецификация

<table>
<thead>
<tr>
<th>Адрес</th>
<th>Биты в 16-ти битном слове</th>
<th>Устройство/доступ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(RO-только чтение RW-чтение запись)</td>
</tr>
<tr>
<td>Dec</td>
<td>15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>- - - - - - - - - - - - EML OFC READY CONV READY ELOAD READY LOW SPEED OTR_Y OTR_X STATUS_REG/RO</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>OutY[12:0]</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>OutX[12:0]</td>
</tr>
<tr>
<td>36</td>
<td>CORDIC_ QUADRANT[1:0]</td>
<td>Zout[12:0]</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>ANGLE_OUT[12:0]</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>AMPLITUDE[12:0]</td>
</tr>
<tr>
<td>39</td>
<td>CHIP_HARD_ID[15:0] = 16’h08E2</td>
<td>HARD_ID/RO</td>
</tr>
</tbody>
</table>

АО «ЗНТЦ» Дизайн-центр проектирования СБИС
8. Программируемый усилитель

На входе БИС имеется дифференциальный усилитель с программируемым
dифференциальным смещением и коэффициентом усиления.

Коэффициент усиления программируется регистрами XG[1:0], GA_X[4:0] и
GA_Y[4:0] в пределах 13-110. При этом регистр XG[1:0] является общим для обоих
каналов.

Программирование напряжения смещения осуществляется регистрами OA_X[5:0]
и OA_Y[5:0] в пределах -75…+75 мВ с шагом 2.3 мВ.

Усилитель может быть отключен установкой бита PDIS=1, в этом случае входной
сигнал подается непосредственно на АЦП без усиления.

Рис.8.1. Зависимость коэффициента усиления значения кода подстройки
K_GA={XG[1:0],
GA[4:0]}=0-31.
Рис.8.2. Зависимость коэффициента усиления значения кода подстройки $K_{GA} = \{XG[1:0], GA[4:0]\} = 32-63$.
Рис. 8.3. Зависимость коэффициента усиления значения кода подстройки \(K_{GA}=\{XG[1:0], GA[4:0]\} = 64-95 \).
Рис.8.4. Зависимость коэффициента усиления значения кода подстройки $K_{GA} = \{XG[1:0], GA[4:0]\} = 96-127$.
Рис.8.5. Зависимость дифференциального напряжения смещения от значения кода подстройки ОА[5:0].

9. Системная диаграмма работы БИС

Системная диаграмма работы БИС показана на рис. 9.1. После подачи питания происходит инициализация триггеров БИС по сигналу внутреннего сброса. После снятия сброса считывается значение регистра бита EE_LD_EN EEPROM. Если бит EE_LD_EN установлен начинается процесс перегрузки данных из EEPROM в регистры, продолжающийся около 100 мкс (на номинальной тактовой частоте 8 МГц), после чего устанавливается бит ELOAD_READY (может быть считан из статусного регистра). В случае если бит EE_LD_EN сброшен перегрузка из EEPROM не производится, состояния регистров остаются равными значениям по сбросу (см. таблицу 6.1), устанавливается бит ELOAD_READY.

После установки бита ELOAD READY сигналы настройки устанавливаются в соответствии с записанными в регистрах. БИС работает в нормальном режиме, аналоговый выход и чтение угловых данных по SPI/SSI работают. Также включается счетчик ожидания команда перехода в режим программирования по OWI. В течение времени счета данного счетчика (26 мс при номинальной тактовой частоте 8 МГц) контроллер БИС проверяет состояние входа OWI и если детектирует на входе команду
активации интерфейса, то переводит БИС в режим работы с регистрами и EEPROM (режим программирования). Иначе, если до окончания счета счетчика ожидания команда активации OWI не детектирована, БИС деактивирует интерфейс OWI и продолжает работать в соответствии с загруженными данными в регистрах. До следующего снятия питания обмен данными по интерфейсу OWI становится невозможен.

В нормальном режиме работы БИС может быть переведена в режим программирования только посредством интерфейса SPI (при CFG=1).

![Diagram](image-url)
10. Настройка параметров преобразования

Входные синусоидальные сигналы преобразуются в код угла, который выдается наружу через аналоговый выход и по интерфейсу SPI/SSI. Преобразование производится с точностью 13 бит. Выходной код может быть скорректирован:
- установкой нулевого положения регистра ZERO_POS[12:0];
- установкой ограничений на нижнее и верхнее значение углового положения PHI_MIN[12:0] и PHI_MAX[12:0];
- установкой крутизны преобразования ANG_RNG_LSB[13:0] и ANG_RNG_MSB[5:0];
- выбором режима 180 градусов или 360 градусов на период входного сигнала битом EN360;
- изменением направления вращения битом DIR;
- установкой ограничения нижнего ограничение углового положения ANG_CLAMP_DN[12:0]

Диаграмма работы представлена на рис.10.1.
Выходное напряжение, В

Фаза входного сигнала φ (время), град (с)

Выходной код положения ANGLE

Фаза входного сигнала φ (время), град (с)

Сдвиг нулевого положения

Входное напряжение V_{REF}

Входное напряжение U_{out}, В

Выходное напряжение U_{out}, В

Рис. 10.1 Диаграмма преобразования угловых данных.
Формулы для преобразования данных углового положения:

\[
\text{ANGLE} = \left(\text{ZERO} _\text{POS} + \frac{8192}{360} \cdot \varphi \right) \cdot K
\]

\[
U_{\text{out}} = \frac{\text{ANGLE}}{5119} \cdot U_{\text{CL} _\text{U}}
\]

\[
K = \frac{\text{ANG} _\text{RNG} _\text{LSB}}{16384} + \frac{\text{ANG} _\text{RNG} _\text{MSB}}{16384}
\]

\[
U_{\text{out} _\text{H}} = \frac{\text{PHIMAX}}{5119} \cdot U_{\text{CL} _\text{U}}
\]

\[
U_{\text{out} _\text{L}} = \frac{\text{PHIMIN}}{5119} \cdot U_{\text{CL} _\text{U}}
\]

\(\varphi \) – фаза входного синусно-косинусного сигнала

Бит EN360 выбирает сколько периодов выходного сигнала ЦАП приходится на 1 период входного сигнала (синусно-косинусного сигнала). При EN360=0 на один период синусно-косинусного сигнала приходится 2 периода сигнала ЦАП (период повторения 180 градусов). При EN360=1 на один период синусно-косинусного сигнала приходится 1 период сигнала ЦАП (период повторения 360 градусов). Магниторезистивные датчики выдают сигнал в диапазоне 180 градусов, поэтому при их подключении бит EN360=1. При использовании данной БИС с магниточувствительной системой на элементах Холла возможны следующие конфигурации:

- EN360=0 – выходной сигнал имеет период 180 градусов (аналогично системе с магниторезисторами);
- EN360=1 – выходной сигнал имеет период 360 градусов

11. Выбор опорного напряжения

Микросхема обеспечивает выбор различных режимов подачи опорного напряжения на АЦП. Управление опорным напряжением обеспечивается регистром REF[1:0].

<table>
<thead>
<tr>
<th>#</th>
<th>REF[1:0]</th>
<th>Описание режима</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Опорное напряжение АЦП поступает с входов VDDR, VSSR</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Опорное напряжение берется от внутреннего стабильного опорного напряжения</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Питание сенсора от встроенного источника тока, опорное напряжение берется с плеч моста</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Не используется</td>
</tr>
</tbody>
</table>
Рис. 11.1. Схема подачи опорного напряжения при REF[1:0]=0.
Рис.11.2. Схема подачи опорного напряжения при REF[1:0]=1.
12. Определение амплитуды сигнала и флаги ошибки

Микросхема содержит блок вычисления амплитуды входного сигнала и блок выдачи сигнала ошибки при выходе входного сигнала за допустимые пределы. Вычисленное значение амплитуды доступно для считывания из регистра Amplitude[12:0]. Значение регистра амплитуды связано со значением амплитуды синусно-косинусного сигнала как:

\[\text{Amplitude}[12:0] = 1.647 \cdot A(\text{InX, InY}) \]

где \(A(\text{InX, InY}) \) – амплитуда входного синусно-косинусного сигнала (значения от 0 до 4095).

Микросхема устанавливает флаг ошибки \(EML \), когда амплитуда входного сигнала снижается ниже порогового значения, установленного в регистре AMP_EML_TH[12:0] (по умолчанию 1000). Флаг \(EML \) может быть отображен на аналоговом выходе путем установки его в нуль (независимо от значения регистра PHI_MIN[12:0]) если установлен регистр EML_OUT_EN EEPROM.

Микросхема формирует суммарный сигнал ошибки \(ERR = EML \| OTR_X \| OTR_Y \) и выводит его на вывод \(ERR/DTSTO \). При наличии ошибки на выходе \(ERR/DTSTO \) устанавливается уровень логической единицы.
Таблица 12.1 Флаги ошибки.

<table>
<thead>
<tr>
<th>№</th>
<th>Флаг ошибки</th>
<th>Описание</th>
<th>Индикация</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EML</td>
<td>Снижение амплитуды входного сигнала ниже порогового значения AMP_EML_TH[12:0]</td>
<td>1) SPI в режиме программирования 2) SPI/SSI в режиме выдачи угловых данных 3) Аналоговый выход 4) OWI</td>
</tr>
<tr>
<td>2</td>
<td>OTR_X</td>
<td>Превышение амплитуды входного сигнала канала X значения опорного напряжения</td>
<td>1) SPI в режиме программирования 2) OWI</td>
</tr>
<tr>
<td>3</td>
<td>OTR_Y</td>
<td>Превышение амплитуды входного сигнала канала Y значения опорного напряжения</td>
<td>1) SPI в режиме программирования 2) OWI</td>
</tr>
<tr>
<td>4</td>
<td>OTR</td>
<td>=OTR_X</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ERR</td>
<td>=EML</td>
<td></td>
</tr>
</tbody>
</table>

13. Интерфейс OWI

Блок обеспечивает обмен данными по однопроводному последовательному интерфейсу OWI. При обмене по интерфейсу БИС датчика угла – всегда ведомый (SLAVE), внешняя управляющая ИС – ведущий (MASTER). Для запуска работы БИС через OWI необходимо в течение 26 мс после подачи питания передать по OWI команду запуска интерфейса (Табл. 13.1, рис.11.1.1).

Таблица 13.1 Формат посылки для запуска работы БИС через OWI.

<table>
<thead>
<tr>
<th>Байт команды (CMD[7:0])</th>
<th>Данные</th>
</tr>
</thead>
<tbody>
<tr>
<td>F8</td>
<td>A49B(hex)</td>
</tr>
</tbody>
</table>
Команда перехода в режим программирования. После детектирования команды микросхема отключает ЦАП и выход через внешний резистор подтягивается к высокому уровню.

13.1 Формат данных и описание команд

На рис. 13.1.1 показан формат обмена данными через OWI интерфейс.

MASTER всегда начинает обмен с команды START. Затем передаётся байт команды, который содержит адрес и сигнал чтения/записи. В случае команды чтения дополнительные биты handover и takeover добавляются в начале и в конце байтов данных чтения. Каждая посылка должна быть закончена командой STOP, подаваемой ведущим устройством.

Рис. 13.1.2 Биты начала и окончания посылки.
Кодирование битов «0» и «1» показано на рис.1.3.

Рис. 13.1.3 Кодирование лог. «1» и лог. «0»

Данные по шине OWI передаются старшим значащим битом вперед.

Формат байта команды

<table>
<thead>
<tr>
<th>№</th>
<th>Команда</th>
<th>Формат команды</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Чтение по адресу ADDR: ADDR[5:0]=0…37</td>
<td>0,ADDR,1, READ FROM ADDR</td>
</tr>
<tr>
<td>2</td>
<td>Запись по адресу ADDR: ADDR[5:0]=0…37</td>
<td>0,ADDR,0, WRITE TO ADDR</td>
</tr>
<tr>
<td>3</td>
<td>Стирание EEPROM по адресу ADDR: ADDR[4:0]=0…31</td>
<td>10,ADDR,0, ERASE EEPROM TO ADDR</td>
</tr>
<tr>
<td>4</td>
<td>Запись одного слова во все ячейки EEPROM</td>
<td>00,11111,0, BLOCK WRITE EEPROM</td>
</tr>
<tr>
<td>5</td>
<td>Стирание (запись нулей) во все ячейки EEPROM</td>
<td>10,11111,0, BLOCK ERASE EEPROM</td>
</tr>
<tr>
<td>6</td>
<td>Перегрузка значений из памяти в регистры</td>
<td>11,11111,0, WRITE FROM EEPROM TO REGISTERS</td>
</tr>
</tbody>
</table>

Примечание1:
Так как БИС датчика угла используются только первые 17 адресов памяти для реализации блочной работы с памятью реализована команда, содержащая в поле адреса единичные
значения (ADDR=1F). Поэтому для корректной работы блока запрещено обращение к памяти по адресу 1F(hex).

13.2 Запись через OWI

Данные на шину поступают от ведущего устройства к ведомому. Чтобы записать данные, должна быть выполнена следующая процедура (Рис. 1.4):
- MASTER передает бит START.
- MASTER записывает байт команды (Табл. 1.1) с битом CMD[0] = 0
- MASTER отправляет два байта данных
- MASTER передает бит STOP

При отсутствии сигнала стоп происходит таймаут и записанные данные игнорируются. В IDLE состоянии шина подтянута до питания.

![Рис. 13.2.1 Запись данных](image)

13.3 Чтение через OWI

Данные на шину поступают от ведомого устройства к ведущему. Чтобы считать данные, должна быть выполнена следующая процедура (Рис. 1.5):

- MASTER передает бит START
- MASTER записывает байт команды (Табл. 1.1) с битом CMD[0] = 1
- MASTER передает высокий уровень в течении t_{w0}
- SLAVE захватывает шину в течении. (slave output enable = 1)
- SLAVE устанавливает шину в 0.
- MASTER отпускает шину (master output enable = 0).
- SLAVE отправляет два байта данных
- SLAVE передает высокий уровень в течении t_{w0}
- MASTER захватывает шину. (master output enable = 1)
- MASTER устанавливает шину в 0.
- SLAVE отпускает шину (slave output enable = 0).
- MASTER передает бит STOP.

Рис. 13.3.1 Чтение данных

![Diagram](image)

Рис.13.3.2. Пример команды чтения по адресу 14 (регистр ANG_RNG_LSB).

13.4 Временные характеристики.

Таблица 13.4.1. Временные характеристики интерфейса OWI.

<table>
<thead>
<tr>
<th>Символ</th>
<th>Параметр</th>
<th>Мин</th>
<th>Тип</th>
<th>Макс</th>
<th>Ед.</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{start}</td>
<td>Длительность бита старт</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>мкс</td>
</tr>
</tbody>
</table>
14. Статусный регистр STATUS_REG

БИС содержит 8-ми разрядный регистр статуса, доступный по чтению.

Таблица 14.1. Структура статусного регистра

<table>
<thead>
<tr>
<th>Биты</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Слово</td>
<td>-</td>
<td>EML</td>
<td>OFC_READY</td>
<td>CONVREADY</td>
<td>ELOAD_READY</td>
<td>LOW_SPEED</td>
<td>OTR_X</td>
<td>OTR_Y</td>
</tr>
</tbody>
</table>

Таблица 14.2. Описание битов статусного регистра

<table>
<thead>
<tr>
<th>№</th>
<th>Бит статусного регистра</th>
<th>Описание</th>
<th>Значение по умолчанию</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OTR_X</td>
<td>Входной сигнал АЦП канала X за пределы диапазона входного сигнала</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>OTR_Y</td>
<td>Входной сигнал АЦП канала Y за пределы диапазона входного сигнала</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>LOW_SPEED</td>
<td>Переполнение счетчика в системе автоматической компенсации напряжения смещения</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>ELOAD_READY</td>
<td>Индикация окончания загрузки данных из EEPROM в регистры</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CONV_READY</td>
<td>Окончание преобразования АЦП</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>OFC_READY</td>
<td>Компенсация напряжения смещения закончена</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>EML</td>
<td>Сигнал индикации ошибки «Потеря магнитного поля»</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>Не используется</td>
<td>0</td>
</tr>
</tbody>
</table>
15. Спящий режим

Микросхема может быть установлена в малопотребляющий (спящий) режим работы. В данном режиме выключаются АЦП, входные усилители, ЦАП, источник питания магниторезистора. Цифровая часть в спящем режиме работает, обмен данными по интерфейсу возможен. Активизация спящего режима после включения питания возможна не ранее чем 30мс (время ожидания команды интерфейса OWI). Регистры микросхемы в спящем режиме сохраняют свои последние значения.

16. Автоматическая регулировка усиления

Микросхема содержит встроенный блок автоматической регулировки усиления, активируемый установкой регистра AGC_EN. ARU обеспечивает регулировку усиления в пределах диапазона изменения регистров GA_X[4:0], GA_Y[4:0] в зависимости от значения регистра амплитуды AMPLITUDE[12:0]. Границы регулировки ARU соответствуют значениям регистра амплитуды 5000-6500.

17. Динамическая компенсация напряжения смещения

Микросхема содержит встроенный блок автоматической динамической компенсации напряжения смещения входных сигналов. Блок активируется установкой регистра AOC_EN. Компенсация работает только при "вращении". Один период компенсации составляет 8 периодов синусно-косинусного сигнала.
18. Интерфейс SSI/SPI

Блок представляет собой интерфейс, работающий по протоколу SSI/SPI, тип – slave.
Блок работает в двух режимах, определяемых состоянием пина CFG:
1. CFG=0 – режим чтения угловых данных;
2. CFG=1 – режим настройки.
Пин CFG имеет встроенную притяжку к нулю.

18.1 Режим чтения угловых данных

В режиме чтения интерфейс работает только на выход, обеспечивается передача угловых данных положения в независимости от состояния входа MOSI.
Длина посылки интерфейса составляет 16 бит, последний бит – бит проверки четности.
В режиме чтения работа микросхемы возможна как в режиме SPI, так и в режиме SSI (без CSn). Выбор режима SPI/SSI осуществляется регистром SSI_MODE: SSI_MODE=0 активен режим SPI, SSI_MODE=1 активен режим SSI. В режиме SSI вход CSn всегда должен быть притянут к нулю.
Первым передается старший бит.
В режиме SPI данные выдаются по падающему фронту CLK, приемник должен забирать данные по нарастающему фронту CLK.
Чтение угловых данных через SPI возможно сразу после включения БИС, в том числе и во время ожидания перехода в режим программирования (первые 26 мс после включения).

! Если был установлен бит SSI_MODE, доступ через интерфейс SPI блокируется. Для стирания бит SSI_MODE необходимо использовать интерфейс OWI.
Таблица 18.1.1: Формат SSI/SPI посылки в режиме чтения угловых данных.

<table>
<thead>
<tr>
<th>№</th>
<th>Данные положения ANGLE_OUT[12:0]</th>
<th>АЦП</th>
<th>Контр.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(LSB) 1 2 3 4 5 6 7 8 9 10 11 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>(MSB) 0 1 2 3 4 5 6 7 8 9 10 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Данные положения ANGLE[12:0] – данные положения

OTR = (OTR_X || OTR_Y) – выход сигнала АЦП за пределы диапазона

EML – сигнал ошибки «Потеря магнитного поля»

CRC – бит контроля четности

Рис. 18.1.1: Временная диаграмма работы интерфейса SSI/SPI в режиме SSI в режиме.

Таблица 18.1.2: Временные параметры блока интерфейса SSI/SPI в режиме SSI.

<table>
<thead>
<tr>
<th>№</th>
<th>Параметр</th>
<th>Обозначение</th>
<th>Единица измерений</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Максимальное значение периода тактового сигнала интерфейса</td>
<td>tclk</td>
<td>нс</td>
<td>250 500 2 x tm</td>
</tr>
<tr>
<td>2</td>
<td>Максимальное значение длительности импульса тактового сигнала</td>
<td>tch</td>
<td>нс</td>
<td>125 250 tm</td>
</tr>
</tbody>
</table>

АО «ЗНТЦ» Дизайн-центр проектирования СБИС
Таблица 18.1.3: Временные параметры блока интерфейса SSI/SPI в режиме SPI.

<table>
<thead>
<tr>
<th>№</th>
<th>Параметр</th>
<th>Обозначение</th>
<th>Единица измерений</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Максимальное время активации интерфейса</td>
<td>t_{DO active}</td>
<td>нс</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Время загрузки данных с шины в регистр</td>
<td>t_{CLK FE}</td>
<td>нс</td>
<td>750</td>
</tr>
<tr>
<td>№</td>
<td>Параметр</td>
<td>Обозначение</td>
<td>Единица измерений</td>
<td>Значение</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>3</td>
<td>Время готовности первого бита данных</td>
<td>$t_{CLK}/2$</td>
<td>нс</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>Время готовности выходных данных</td>
<td>$t_{DO\ valid}$</td>
<td>нс</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>Время перехода выхода в третье состояния по окончании загрузки</td>
<td>$t_{DO\ tristate}$</td>
<td>нс</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>Минимальная длительность сигнала CSn</td>
<td>t_{CSn}</td>
<td>нс</td>
<td>500</td>
</tr>
<tr>
<td>7</td>
<td>Максимальная значение частоты на шине CLK</td>
<td>f_{CLK}</td>
<td>МГц</td>
<td>4</td>
</tr>
</tbody>
</table>

18.2 Режим настройки

В режиме настройки производится конфигурирование БИС.
Для программирования БИС необходимо вход CFG установить в «1».
Работа осуществляется в режиме SPI_MODE=0.

Таблица 18.2.1. Команды интерфейса

<table>
<thead>
<tr>
<th>№</th>
<th>Команда</th>
<th>Формат команды</th>
<th>Функция</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Чтение по адресу ADDR: ADDR[5:0]=0…37</td>
<td>0,ADDR,1</td>
<td>READ FROM ADDR</td>
</tr>
<tr>
<td>2</td>
<td>Запись по адресу ADDR: ADDR[5:0]=0…37</td>
<td>0,ADDR,0</td>
<td>WRITE TO ADDR</td>
</tr>
<tr>
<td>3</td>
<td>Стирание EEPROM по адресу ADDR: ADDR[5:0]=0…31</td>
<td>10,ADDR,0</td>
<td>ERASE EEPROM TO ADDR</td>
</tr>
<tr>
<td>4</td>
<td>Запись одного слова во все ячейки EEPROM</td>
<td>00,11111,0</td>
<td>BLOCK WRITE EEPROM</td>
</tr>
<tr>
<td>5</td>
<td>Стирание (запись нулей) во все ячейки EEPROM</td>
<td>10,11111,0</td>
<td>BLOCK ERASE EEPROM</td>
</tr>
<tr>
<td>6</td>
<td>Перегрузка значений из памяти в регистры</td>
<td>11,11111,0</td>
<td>WRITE FROM EEPROM TO REGISTERS</td>
</tr>
</tbody>
</table>

Программирование БИС (команда(1 байт) + данные (2 байта)) производится 2-мя циклами (запись команды и запись/чтение данных).
Рис. 18.2.1. Первый цикл обмена через SPI

Рис. 18.2.2. Второй цикл обмена через SPI
Запись регистров через SPI

- MASTER устанавливает CSn в низкий уровень и запускает сигнал тактовой частоты CLK (Рис. 18.2.1)
- MASTER передает команду (Табл. 18.2.1) с битом CMD[0]=0 и нулевой байт (8 бит = 0) через линию MOSI.
- MASTER устанавливает CSn в высокий уровень и останавливает сигнал тактовой частоты CLK.
- MASTER устанавливает CSn в низкий уровень и запускает сигнал тактовой частоты CLK (Рис. 18.2.2).
- MASTER передает 2 байта данных через линию MOSI.

MASTER устанавливает CSn в высокий уровень и останавливает сигнал тактовой частоты CLK

Чтение регистров через SPI

- MASTER устанавливает CSn в низкий уровень и запускает сигнал тактовой частоты CLK (Рис. 18.2.1)
- MASTER передает команду (Табл. 18.2.1) с битом CMD[0]=1 и нулевой байт (8 бит = 0) через выход MOSI.
- MASTER устанавливает CSn в высокий уровень и останавливает сигнал тактовой частоты CLK.
- MASTER устанавливает CSn в низкий уровень и запускает сигнал тактовой частоты CLK (Рис. 18.2.2).
- SLAVE передает 2 байта данных через выход MISO.
- MASTER устанавливает CSn в высокий уровень и останавливает сигнал тактовой частоты CLK
19. Корпус

Кристалл сажается на проводящий материал.

Исполнение в корпусе QFN40
Исполнение в корпусе Н16.48
1. A - длина вывода, в пределах которой производится контроль смещения плоскостей симметрии выводов от номинального расположения.
2. Б - ширина зоны, которая включает действительную ширину микросхемы и неконтролируемую часть выводов.
3. Нумерация выводов показана условно.
Исполнение в корпусе 5122.24 (Н06.24)
Бескорпусное исполнение

<table>
<thead>
<tr>
<th>№</th>
<th>Параметр</th>
<th>Обозначение</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Длина, не более, мкм</td>
<td>Ld</td>
<td>3700</td>
</tr>
<tr>
<td>2</td>
<td>Ширина, не более, мкм</td>
<td>Wd</td>
<td>3700</td>
</tr>
<tr>
<td>3</td>
<td>Размер контактной площадки, мкм</td>
<td>Lp x Wp</td>
<td>85х85</td>
</tr>
<tr>
<td>4</td>
<td>Толщина кристалла, мкм</td>
<td>Td</td>
<td>280</td>
</tr>
<tr>
<td>5</td>
<td>Материал контактных площадок</td>
<td></td>
<td>Алюминий</td>
</tr>
</tbody>
</table>

Нумерация выводов - против часовой стрелки
20. Схемы применения

20.1 Магниторезистивный датчик угла с линейным выходом и опорным напряжением от внутреннего источника опорного напряжения

! Установить регистр EN_360=1.
! Установить регистр REF[1:0]=01.

Рис.20.1.1. Схема включения микросхемы для создания датчика угла с аналоговым выходом.

Величина емкости \(C_f \) выбирается в диапазоне 0.5-5нФ.
Для питания магниторезистора может быть использован и встроенный источник тока. В этом случае магниторезистивные мосты включаются последовательно к выходу MR_CURR микросхемы, выход VSSR микросхемы подключается к земле.
20.2 Магниторезистивный датчик угла с линейным выходом и опорным напряжением с плеч моста

! Установить регистр EN_360=1.
! Установить регистр REF[1:0]=00.

Рис.20.2.1. Схема включения микросхемы для создания датчика угла с аналоговым выходом.

20.3 Магниторезистивный датчик угла с цифровым выходом

! Установить бит EN_360=1.
! Установить регистр REF[1:0]=01.
Подключение вывода CFG зависит от режима работы. Если используется только режим чтения угловых данных, то вывод CFG может оставаться неподключенным (либо притянутым к земле), соединение вывода MOSI с контроллером при этом также не требуется. При использовании режима настройки вывод CFG подключается к питанию.

20.4 Настройка датчика с магниторезисторами

1. БИС должна быть предварительно настроена (тактовый генератор, смещение входного усилителя). Автоматическая коррекция смещения должна быть отключена.
2. Включить схему без внешнего магнитного поля.
6. Установить магнит на требуемом расстоянии от магниторезисторов.
8. Подстраивая ток через магниторезисторы регистром TCURR[3:0] (в случае использования встроенного источника тока для питания магниторезистора) и усиление входного усилителя регистром GA[4:0] добиться, чтобы амплитуда синусоидального сигнала была максимальной.
9. Убрать магнит и повторить шаги 2-5.

20.5 Работа с внешним синусно-косинусным датчиком угла с дифференциальным выходом

! Амплитуда синусно-косинусного сигнала на входе БИС должна находиться в пределах VDD/2 ± 1.5В
! Установить бит SDIS=1
! Если выход датчика угла имеет большую амплитуду сигнала, необходимо отключить встроенный усилитель. Для этого установить бит PDIS=1.

Рис.20.5.1 Схема включения при работе с внешним синусно-косинусным энкодером.

20.6 Работа с датчиками с однополярным выходом
Опорное напряжение U_{ref} должно быть в диапазоне $V_{\text{DD}}/2 \pm 0.1$ и совпадать со средним уровнем выходных сигналов синусно-косинусного датчика угла.

Рис.20.6.1. Схема включения датчика с однополярным выходом.
21. Средства разработки

1. Отладочная плата MR_ASIC2_test_board_24
Особенности:
- Распаянная микросхема K1382HX045 в корпусе 5122.24
- Доступно подключение ко всем входам микросхемы
- Встроенный программатор USB-SPI
- Встроенный драйвер интерфейса SSI

2. Отладочная плата MR_ASIC2_test_board_QFN40
Особенности:
- Распаянная микросхема K1382HX045 в корпусе QFN-40
- Доступно подключение ко всем входам микросхемы
- Встроенный программатор USB-SPI
- Встроенный драйвер интерфейса SSI

3. ПО отладки K1382HX045_eval_software
Особенности:
- Работает на ОС Windows XP, Windows 7
- Используется совместно с отладочными платами для K1382HX045
- Обеспечивает доступ ко всем регистрам K1382HX045
- Поддержка работы в режиме программирования
- Поддержка работы в режиме чтения угловых данных и сохранения данных в файл
- Поддержка режима чтения регистров Angle, Sine, Cosine и Amplitude с сохранением данных в файл
- X-Y график для облегчения настройки

4. Программатор ENC3_PROGRAMMER
Особенности:
- Поддерживает работу через интерфейс OWI
- Поддержка интерфейса SPI
- Поддержка интерфейса SSI
- ПО работает на ОС Windows

5. Демонстрационная плата
Особенности:
- Размещенная на плате сенсорная система с квадратурным AMR-сенсором
- TFT-дисплей для отображения данных положения
История версий

<table>
<thead>
<tr>
<th>Дата</th>
<th>Автор</th>
<th>Описание</th>
<th>Раздел</th>
<th>Версия</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.11.2012</td>
<td>Прокофьев Г.В.</td>
<td>Стартовая версия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.12.2012</td>
<td>Прокофьев Г.В.</td>
<td>Добавлено описание работы интерфейса OWI и интерфейса SPI в режиме настройки</td>
<td>11, 13.2</td>
<td>1.01</td>
</tr>
<tr>
<td>07.03.2014</td>
<td>Прокофьев Г.В.</td>
<td>Добавлена таблица выводов в корпусе Н16.48 Дин DI переименован в MOSI Пин DO переименован в MISO Добавлен чертеж корпуса Н16.48</td>
<td>4, 3.4, 13</td>
<td>1.1</td>
</tr>
<tr>
<td>29.05.2014</td>
<td>Прокофьев Г.В.</td>
<td>Добавлена таблица выводов для корпусов QFN-40, 5123.28, 5122-24 Добавлены примеры работы с OWI. Добавлен чертеж корпуса 5122.24 Обновлены схемы применения</td>
<td>11, 14, 15</td>
<td>2.01</td>
</tr>
<tr>
<td>18.01.2015</td>
<td>Прокофьев Г.В.</td>
<td>Внесены изменения в соответствии с документом MR ASIC spec_v2.0.doc Все выводы имеют уникальные нумерацию для корпусов QFN-40, 5123.28, 5122-24</td>
<td>все</td>
<td>1.11</td>
</tr>
<tr>
<td>14.07.2015</td>
<td>Прокофьев Г.В.</td>
<td>Внесены последние изменения Все выводы имеют уникальные нумерацию для корпусов QFN-40, 5123.28, 5122-24</td>
<td>все</td>
<td>2.02</td>
</tr>
<tr>
<td>16.09.2015</td>
<td>Прокофьев Г.В.</td>
<td>Минимальная длительность бита старт интерфейса OWI увеличена до 10мкс Все выводы имеют уникальные нумерацию для корпусов QFN-40, 5123.28, 5122-24</td>
<td>10, 21</td>
<td>2.03</td>
</tr>
<tr>
<td>25.10.2015</td>
<td>Прокофьев Г.В.</td>
<td>Скорректированы диаграмма и формулы преобразования Все выводы имеют уникальные нумерацию для корпусов QFN-40, 5123.28, 5122-24</td>
<td>все</td>
<td>2.02</td>
</tr>
</tbody>
</table>

ЗАО «Зеленоградский нанотехнологический центр»
Дизайн-центр проектирования СБИС
Адрес: 124498, Москва, Зеленоград, проезд 4806, д.5, стр.23
Тел.: +7(499)720-69-72; Факс: (499) 720-69-69
Электронная почта: info@zntc.ru; prokofiev@idm-plus.ru